we did some pre task in blog: https://liamy.clovy.top/e771385866b0465990dcd7e17870b591
/// Raw task header for use in task pointers.
pub(crate) struct TaskHeader {
// the state of the Task
pub(crate) state: State,
// the next task of current task in the run_queue linked table
pub(crate) run_queue_item: RunQueueItem,
// the executor taking the duty to poll the current task
pub(crate) executor: SyncUnsafeCell<Option<&'static SyncExecutor>>,
// the poll func to be called by the executor when current task is scheduled
poll_fn: SyncUnsafeCell<Option<unsafe fn(TaskRef)>>,
#[cfg(feature = "integrated-timers")]
pub(crate) expires_at: SyncUnsafeCell<u64>,
#[cfg(feature = "integrated-timers")]
pub(crate) timer_queue_item: timer_queue::TimerQueueItem,
}
<aside>
💡 There are some comments in the code above. it maybe useful to understand the following parts of the article, for the TaskHeader
almost contains all information about a task.
</aside>
Here, we set the poll_fn
, a func pointer to TaskStorage::<F>::**poll
instead of** our main task’s poll, which is generated by compiler. When we set the value, we won’t call the func poll
.
This func will be mentioned below.
Then we set the future
to our main future. And create a TaskRef
, a pointer to the TaskStorage
.
Finally, we wrap the task ptr to a SpawnToken
so that the task will be scheduled by the executor.
from file embassy-executor-macros/src/lib.rs:27
/// Declares an async task that can be run by `embassy-executor`. The optional `pool_size` parameter can be used to specify how
/// many concurrent tasks can be spawned (default is 1) for the function.
///
///
/// The following restrictions apply:
///
/// * The function must be declared `async`.
/// * The function must not use generics.
/// * The optional `pool_size` attribute must be 1 or greater.
///
///
/// ## Examples
///
/// Declaring a task taking no arguments:
///
/// ``` rust
/// #[embassy_executor::task]
/// async fn mytask() {
/// // Function body
/// }
/// ```
///
/// Declaring a task with a given pool size:
///
/// ``` rust
/// #[embassy_executor::task(pool_size = 4)]
/// async fn mytask() {
/// // Function body
/// }
/// ```
#[proc_macro_attribute]
pub fn task(args: TokenStream, item: TokenStream) -> TokenStream {
let args = syn::parse_macro_input!(args as Args);
let f = syn::parse_macro_input!(item as syn::ItemFn);
task::run(&args.meta, f).unwrap_or_else(|x| x).into()
}
it’s easy to understand the args and item in the function signature. And the args and f in the body corresponding to the input args and item. So the important part that do the practical thing is task::run
part.
from embassy-executor-macros/src/macros/task.rs:15
pub fn run(args: &[NestedMeta], f: syn::ItemFn) -> Result<TokenStream, TokenStream> {
let args = Args::from_list(args).map_err(|e| e.write_errors())?;
let pool_size = args.pool_size.unwrap_or(Expr::Lit(ExprLit {
attrs: vec![],
lit: Lit::Int(LitInt::new("1", Span::call_site())),
}));
let ctxt = Ctxt::new();
if f.sig.asyncness.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must be async");
}
if !f.sig.generics.params.is_empty() {
ctxt.error_spanned_by(&f.sig, "task functions must not be generic");
}
if !f.sig.generics.where_clause.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not have `where` clauses");
}
if !f.sig.abi.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not have an ABI qualifier");
}
if !f.sig.variadic.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not be variadic");
}
match &f.sig.output {
ReturnType::Default => {}
ReturnType::Type(_, ty) => match &**ty {
Type::Tuple(tuple) if tuple.elems.is_empty() => {}
Type::Never(_) => {}
_ => ctxt.error_spanned_by(
&f.sig,
"task functions must either not return a value, return `()` or return `!`",
),
},
}
let mut args = Vec::new();
let mut fargs = f.sig.inputs.clone();
for arg in fargs.iter_mut() {
match arg {
syn::FnArg::Receiver(_) => {
ctxt.error_spanned_by(arg, "task functions must not have receiver arguments");
}
syn::FnArg::Typed(t) => match t.pat.as_mut() {
syn::Pat::Ident(id) => {
id.mutability = None;
args.push((id.clone(), t.attrs.clone()));
}
_ => {
ctxt.error_spanned_by(arg, "pattern matching in task arguments is not yet supported");
}
},
}
}
ctxt.check()?;
let task_ident = f.sig.ident.clone();
let task_inner_ident = format_ident!("__{}_task", task_ident);
let mut task_inner = f;
let visibility = task_inner.vis.clone();
task_inner.vis = syn::Visibility::Inherited;
task_inner.sig.ident = task_inner_ident.clone();
// assemble the original input arguments,
// including any attributes that may have
// been applied previously
let mut full_args = Vec::new();
for (arg, cfgs) in args {
full_args.push(quote!(
#(#cfgs)*
#arg
));
}
#[cfg(feature = "nightly")]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
trait _EmbassyInternalTaskTrait {
type Fut: ::core::future::Future + 'static;
fn construct(#fargs) -> Self::Fut;
}
impl _EmbassyInternalTaskTrait for () {
type Fut = impl core::future::Future + 'static;
fn construct(#fargs) -> Self::Fut {
#task_inner_ident(#(#full_args,)*)
}
}
const POOL_SIZE: usize = #pool_size;
static POOL: ::embassy_executor::raw::TaskPool<<() as _EmbassyInternalTaskTrait>::Fut, POOL_SIZE> = ::embassy_executor::raw::TaskPool::new();
unsafe { POOL._spawn_async_fn(move || <() as _EmbassyInternalTaskTrait>::construct(#(#full_args,)*)) }
}
};
#[cfg(not(feature = "nightly"))]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
const POOL_SIZE: usize = #pool_size;
static POOL: ::embassy_executor::_export::TaskPoolRef = ::embassy_executor::_export::TaskPoolRef::new();
unsafe { POOL.get::<_, POOL_SIZE>()._spawn_async_fn(move || #task_inner_ident(#(#full_args,)*)) }
}
};
task_outer.attrs.append(&mut task_inner.attrs.clone());
let result = quote! {
// This is the user's task function, renamed.
// We put it outside the #task_ident fn below, because otherwise
// the items defined there (such as POOL) would be in scope
// in the user's code.
#[doc(hidden)]
#task_inner
#task_outer
};
Ok(result)
}
this is really long to say, I beak it down.
#[derive(Debug, FromMeta)]
struct Args {
#[darling(default)]
pool_size: Option<syn::Expr>,
}
...
let args = Args::from_list(args).map_err(|e| e.write_errors())?;
let pool_size = args.pool_size.unwrap_or(Expr::Lit(ExprLit {
attrs: vec![],
lit: Lit::Int(LitInt::new("1", Span::call_site())),
}));
from this part, we get the args pool_size. Below is the default value setting for unwrap_or
Expr::Lit(ExprLit {
attrs: vec![],
lit: Lit::Int(LitInt::new("1", Span::call_site())),
})
it construct a literal expression which has no attributes and it’s literal value is a literal int with value 1. The Span::call_site()
(part of proc_macro2), where the Span object is to report the src location when error occurs and so this means it will point to the use/call of macro to help developer debug.
let ctxt = Ctxt::new();
if f.sig.asyncness.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must be async");
}
if !f.sig.generics.params.is_empty() {
ctxt.error_spanned_by(&f.sig, "task functions must not be generic");
}
if !f.sig.generics.where_clause.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not have `where` clauses");
}
if !f.sig.abi.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not have an ABI qualifier");
}
if !f.sig.variadic.is_none() {
ctxt.error_spanned_by(&f.sig, "task functions must not be variadic");
}
match &f.sig.output {
ReturnType::Default => {}
ReturnType::Type(_, ty) => match &**ty {
Type::Tuple(tuple) if tuple.elems.is_empty() => {}
Type::Never(_) => {}
_ => ctxt.error_spanned_by(
&f.sig,
"task functions must either not return a value, return `()` or return `!`",
),
},
}
...
ctxt.check()?;
So the function should without: generic, where
clauses, ABI qualifier and variadic. It's return should either not return a value, return ()
or return !
. And most importantly, it should be async.